Since the completion of the Human Genome Project in 2003, genomic research has rapidly advanced. Technological advances and plummeting testing costs have allowed genetic testing to be implemented into daily clinical practice and have deepened the understanding of how genes affect health (Cecchin & Stocco, 2020; Prokop et al., 2018). One current area of genetic applications in clinical practice is precision medicine. Also known as personalized medicine, precision medicine considers an individual’s genetic composition, environment, and lifestyle choices when making decisions regarding disease prevention and treatment (Dodson, 2017).

Pharmacogenetics and pharmacogenomics have become important components of precision medicine. These terms are often used interchangeably. However, pharmacogenetics is generally defined as the study of inherited gene variants that can affect how a person responds to drugs, whereas pharmacogenomics is a broader term describing the study of acquired and inherited variants across the entire genome (an individual’s complete set of genes) and their effects on drug metabolism (Dodson, 2017).

Pharmacogenomics studies how changes to the genome alter proteins involved in drug metabolism, thereby affecting the pharmacokinetics of drugs (Crisafulli et al., 2019). Oncology nurses can be leaders in implementing pharmacogenomics into daily clinical practice. To do so effectively, oncology nurses must understand how DNA is collected and tested, how to interpret the test results, and how to educate patients about their results.

KEYWORDS
pharmacogenomics; pharmacogenetics; germline testing; precision medicine

DIGITAL OBJECT IDENTIFIER
10.1188/23.CJON.129-133